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A B S T R A C T   

Using U.S. Current Population Survey data, this paper compares the distributional impacts of the 
COVID-19 Pandemic Crisis and those of Global Financial Crisis in terms of (i) worker charac-
teristics, (ii) job characteristics–“social” (where individuals interact to consume goods), “tele-
workable” (where individuals have the option of working at home), and “essential” jobs (which 
were not subject to government mandated shutdowns during the recent recession), and (iii) wage 
distributions. We find that young and less educated workers have always been affected more in 
recessions, while women and Hispanics were more severely affected during the Pandemic 
Recession. Surprisingly, teleworkable, social and essential jobs have been historically less 
cyclical. This historical acyclicality of teleworkable occupations is attributable to its higher share 
of skilled workers. Unlike during the Global Financial Crisis, however, employment in social 
industries fell more whereas employment in teleworkable and essential jobs fell less during the 
Pandemic Crisis. During both recessions, workers at low-income earnings have suffered more than 
top-income earners, suggesting a significant distributional impact of the two recessions. Lastly, a 
large share of unemployed persons was on temporary layoff during the COVID-19 recession, 
unlike the Global Financial Crisis.   

1. Introduction 

The novel coronavirus, also known as SARS-CoV-2, had significantly impacted the U.S. labor market. The Bureau of Labor Statistics 
(BLS) data for April 2020 show that the U.S. unemployment rate has increased to 14.7 percent from 3.5 percent in February 2020. 
During the same period, the employment-to-population ratio has plummeted from 61.1 percent to 51.3 percent. The government’s 
shutdown and social-distancing policies had differential impacts on the types of jobs that had been lost. On one hand, the government 
allowed continued operations of “essential” industries, such as health care workers, water utilities, and grocery stores. On the other 
hand, the social-distancing policy prohibited operations of “social jobs” that require physical interactions, such as leisure and hos-
pitality industries. Moreover, while some workers could start working from home, others could not work without going into their 
workplace, such as workers at grocery stores. 

The purpose of this paper is two fold: (i) to study the differential impacts on employment, unemployment rate, and hours worked 
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across different segments of the economy and (ii) to compare the labor market impacts of the current Pandemic Recession to those of 
the Global Financial Crisis.1 In particular, we focus on (i) three types of job characteristics – “essential” (which were not subject to 
government mandated shutdowns during the current Pandemic recession), “social” (where consumption of goods require human 
interactions) and “teleworkable” (where individuals have the option of working at home) –, and (ii) wage distributions of workers. In 
Appendix, we show distributional impacts of labor market for workers with different demographic characteristics – age, gender, race 
and education. 

Using U.S. Current Population Survey data, we show that teleworkable and essential jobs are less affected during the current 
Pandemic Recession while social jobs have been affected severely. Surprisingly, however, all three types of jobs have been less affected 
(or less cyclical) even during the 2008 Global Financial Crisis. Moreover, the resilience (acyclicality) of teleworkable jobs to the 
negative aggregate shocks during the Global Financial Crisis can be attributable to the fact that a large share of workers in teleworkable 
jobs is skilled or highly-educated workers – who have been historically less affected in any recession. 

Looking at demographic characteristics of workers, this paper corroborates the findings of other research in that Hispanic and 
female workers have been more severely affected than their counterparts during the current Pandemic Recession. Less educated and 
young workers have always been affected more severely than their more educated and older counterparts in both recessions (the 
Global Financial Crisis and the current Pandemic recession). Interestingly, the data still does not show an evidence of older workers, 
who are known to have a higher mortality risk from COVID-19, getting more severely affected in terms of job loss. 

The Global Financial Crisis and the current Pandemic recession both had a significant negative distributional impact in terms of job 
prospects. Low-income earners had a much higher chance of job loss than those at the top wage quantile. This differential impact of the 
job separation rates was much more stark during the current Pandemic recession. This result holds true even after accounting for 
worker characteristics as well as occupation, industry, and state fixed effects, and corroborates the finding of Cajner et al. (2020), who 
have used administrative payroll data. 

Finally, this paper finds a suggestive evidence of differences in the compositions of permanent vs. short-term job loss between the 
two recessions. We find that permanent job loss comprised a large share of newly unemployed persons during the Global Financial 
Crisis while temporary layoff comprised a large fraction of newly unemployed persons during the COVID-19 pandemic recession. This 
finding corroborates findings of Kurmann, Lalé, and Ta (2020) on firm side that the impact of COVID-19 crisis could be short-lived, and 
workers could avoid human capital losses. 

This paper complements the existing literature in several ways: (i) we compare the current recession with the Global Financial 
Crisis and show that teleworkable jobs have historically been less affected (cyclical) than other jobs, mainly due to their large share of 
skilled workers; (ii) we also highlight the importance of looking at both occupation and industry by showing large heterogeneity within 
occupation × industry pairs in terms of their degree of being teleworkable, social, and essential (e.g. Dingel and Neiman (2020), 
Mongey, Pilossoph, and Weinberg (2020), and Kaplan, Moll, and Violante (2020)); and (iii) we also corroborate that low wage earners 
suffer more in terms of job loss both during the current recession and the Global Financial Crisis, but particularly so during the current 
Pandemic recession. 

A sizable literature has emerged seeking to understand the macroeconomic impact of the novel coronavirus. A subset of this 
literature employs economic theory to understand the tradeoffs between minimizing adverse health effects and mitigating economic 
disruptions (Alvarez, Argente, & Lippi, 2020; Eichenbaum, Rebelo, & Trabandt, 2020; Jones, Philippon, & Venkateswaran, 2020; 
Kaplan et al., 2020). Others provide high-frequency data to track the impact of the coronavirus on small businesses (Bartik, Bertrand, 
Cullen, et al., 2020), economic uncertainty (Baker, Bloom, Davis, & Terry, 2020), consumption and debt (Baker, Farrokhnia, Meyer, 
Pagel, & Yannelis, 2020), stock market volatility (Baker, Bloom, Davis, Kost, et al., 2020), and broad economic activity (Lewis, 
Mertens, & Stock, 2020). Two recent papers – Dingel and Neiman (2020) and Mongey et al. (2020) – predict heterogeneous 
employment losses during the current recession based on job characteristics, such as the ability to work at home, or whether the sector 
requires social interaction, which we test in the CPS data. 

This paper most closely relates to the rapidly growing segment of empirical literature which monitors the labor market during the 
beginning of the Pandemic Recession. Cajner et al. (2020) use weekly paycheck data from ADP – the largest U.S. payroll processing 
company – to study the behavior of different segments of the U.S. labor market through mid-April. They find that employment declines 
have been concentrated at the bottom of the wage distribution, amongst the youngest and eldest of the population, and in social 
industries. Similarly, Bartik, Bertrand, Lin, Rothstein, and Unrath (2020) and Kurmann et al. (2020) show enormous declines in both 
employment and hours in the aggregate economy as well as the leisure and hospitality sector, respectively, using data from Homebase, 
and online scheduling and time-clock software provider. Coibion, Gorodnichenko, and Weber (2020) use survey data from the Nielsen 
Homescan panel in the first week of April to document huge declines in employment, as well as an unprecedented 7 percentage point 
decline in labor force participation, between early March and early April. Our paper complements these works by using a large, 
nationally-representative survey to highlight the labor market behavior across demographic groups. Lastly, Montenovo et al. (2020) 
also study disparities in labor market outcomes using the Current Population Survey until April 2020. Specifically, they study how 
recent incidence of job loss differed across different demographic groups and face-to-face work, remote, and essential work. However, 
they do not compare the recent labor market outcome against the Global Financial Crisis in terms of job characteristics unlike this 
paper. 

The paper proceeds as follows. Section 2 describes the Current Population Survey in detail, as well as our approach to sample 

1 One caveat of this paper is that our latest available data for the current Pandemic is April 2020, which could be the beginning, middle, or end of 
the current crisis. Empirical results may change as more data become available. 
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construction. Section 3 explores the patterns for the aggregate economy, focusing on the share of both employed and unemployed 
workers and hours worked. Section 4 studies the heterogeneity in labor market outcomes across occupation and industry between the 
Global Financial Crisis and the Pandemic crisis. Section 5 conducts regression analysis to understand the cyclicality of teleworkable, 
social, and essential jobs between the Global Financial Crisis and the current Pandemic recession. Section 6 studies the distributional 
impact of the Global Financial Crisis and the Pandemic recession in terms of job separation rates based on wage quantiles. Section 7 
studies the difference in the unemployment pool by reason between the two recessions. Section 8 concludes. Appendix A explores 
heterogeneity in the labor market behavior of workers according to their demographics and education. 

2. Data 

We use the Current Population Survey (CPS), a national representative survey for the U.S., between 2007 to April 2020. The CPS 
has several advantages over high-frequency datasets that have been used to track the coronavirus’ influence on the labor market thus 
far. The CPS is a large, nationally-representative survey and is the source data underlying official employment statistics released by the 
Bureau of Labor Statistics (BLS). The CPS contains information regarding workers’ labor force status, industry, occupation, and de-
mographics (e.g. sex, age, race, geographical locations, and education), permitting new insight into the effects of the coronavirus 
across a variety of individual types. 

The CPS conducts monthly interviews of approximately 60,000 households and 100,000 to 150,000 individuals based on physical 
address. Households are interviewed for four consecutive months, and then rotated out for the next eight months before being inter-
viewed again four more months. This structure allows researchers to track workers’ labor force status for a maximum of eight months 
during a 16-month period. In the fourth and eighth month in the survey (outgoing rotation groups), workers in the sample are asked about 
their wage information, which we will use to rank workers into different wage quantiles. 

We use cross-sectional aspect of the CPS for majority of our analysis but also use its longitudinal aspect to study the distributional 
impact of the current Pandemic recession. To construct longitudinal CPS dataset, we follow the algorithm in Madrian and Lefgren (2000) 
to match individuals over 5 months over the period of 13 months. Individuals are matched across months based on their household 
identifier, personal identifier, sex, age, and race. Age is allowed to differ by increment of one between consecutive months. Based on this 
algorithm, close to 90 percent of the eligible sample can be matched for four consecutive months.2 More than 60 percent of the eligible 
sample can be followed for five monthly surveys across 13 months. 

Because only a subsample of the individuals can be matched in the survey due to various reasons including simple attrition and coding 
errors, longitudinal data do not necessarily line up with the aggregate cross-sectional statistics. If the matching attrition is completely 
random and independent of any demographic characteristics, we can simply scale up the weights by the ratio of the total sample number 
in the original survey to the number in the matched sample. However, attrition is often not random. To ensure that demographic rep-
resentations in the matched sample mirror those in the original survey, we rescale the sample weights of the matched individuals by 
multiplying them by the inverse of matching probability conditional on the individual’s demographic characteristics and labor force 
status. Specifically, we estimate a logit model and calculate the predicted probability of matching conditional on gender, age, race, 
education, and labor force status. We then multiply the original weights by the inverse of the corresponding predicted probabilities. This 
partially alleviates the problem arising from non-random attrition. Throughout the paper, we focus on a broad definition of prime-age 
workers by only considering those between the ages of 21 and 70. We additionally exclude military workers. 

Fig. 1. Aggregate employment and average hours decline.  

2 In each month, the survey contains 8 rotational groups based on the number of month in the sample. Between two consecutive months, only a 
subset of the workers belonging to the rotation groups 1–3 and 4–7 in the first month can be matched to the following month’s survey. These eligible 
groups from the first survey will appear as the rotation groups 2–4 and 5–8 in the second survey while the rotation groups 5 and 8 from the first 
survey will leave the CPS sample, either for the next 8 months (for rotation group 5) or permanently (rotation group 8). Thus, around 75 percent of 
the total sample from the first month is eligible to be matched. 
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3. Aggregate employment and hours declines during the pandemic recession 

This section summarizes the aggregate employment decline in the United States during the first few months of the Pandemic 
recession. Fig. 1 shows the trend in the aggregate employment rate for individuals aged 21 to 70 between January and April 2020. We 
highlight two employment rate series: the first tracks those who report being employed while the second excludes those who report 
being employed but were absent from work during the survey week. As seen from the figure, the U.S. employment to population rate 
for this age groups fell by almost nine percent during this period. The decline was even steeper – at 12 percent – excluding workers who 
were absent from work from the employment measure.3 Fig. 1 also shows the average hours worked for all individuals aged 21 to 70 
who remained employed with positive hours through April 2020 (solid line). Hours worked for those that remained employed fell by 
3.3 percent or 1.3 h. 

How much of total decline in hours worked has occurred on the extensive margin vs. the intensive margin? Aggregate hours worked 
including both the extensive and intensive margin changes has fallen by 17.3 percent between January and April 2020. Using the 
results above, 80 percent of the decline in aggregate hours (or − 13.8 percent) is attributable to the extensive margin (decline in 
employment rate) while 20 percent (or − 3.4 percent) is attributable to the intensive margin (hours worked). 

Fig. 2 plots trends in the unemployment rate for 21–70 year old during the same period. Again, we compute two unemployment 
measures. First, we measure the unemployed as those who are not employed but who are actively looking for a job. This is the standard 
unemployment measure. For our second measure, we also include those who report being employed but were absent from work as also 
being unemployed. The unemployment rate for workers between 21–70 years old have increased by 9.3 percent between January and 
April 2020. An alternative measure of unemployment rate, which includes those who report being employed but were absent from 
work as also being unemployed, has increased by 13.5 percent from 6 percent to 19.5 percent during the same period. 

Fig. 2. Unemployment rate.  

Fig. 3. Change in unemployment rate and hours worked during 2007–2009 and 2019–April 2020 by occupation.  

3 Note that in this study, we use non-seasonally adjusted data and different age groups (21–70 years old) from the Employment Situation Report 
by Census. Therefore, the numbers here may be slightly different from the Census report. 
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4. The Distributional effects of the pandemic recession vs. the global financial crisis by occupation and industry 

4.1. Occupation 

In this section, we first compare the changes in unemployment rate and average hours worked by occupation. Here, we focus on the 
unemployment rate rather than employment because only employed and unemployed workers, but not those out of the labor force, 
report their occupation and industry.4 Fig. 3 plots the changes in unemployment rate and the log average hours worked by occupation 
between 2007–2009 and 2019–April 2020. Whereas service occupations were affected less during the Global Financial Crisis, workers 
in that sector suffered most during the current recession. Sales and office and administrative support also saw relatively sharper in-
crease in the unemployment rate during the current recession than the previous recession. On the other hand, conditional on being 
employed, the patterns of changes in the average hours worked were very similar between the past recession and the current recession. 
Workers in management, business and financial occupations have been less affected than workers in other occupations both during the 
current recession and the Global Financial Crisis. 

4.1.1. Teleworkable occupations 
Due to social distancing measure and lock-down policies, workers who are able to work from home are postulated to be less affected 

during the current crisis. Following Dingel and Neiman (2020) and Mongey et al. (2020), we classify jobs into teleworkable and 
non-teleworkable occupations. Fig. 4 plots the changes in unemployment rate for teleworkable and non-teleworkable occupations. We 
see that workers in teleworkable occupations are less affected during any recession, but workers in non-teleworkable occupations have 
been much more severely affected during the current recession. Fig. 4 looks very similar when we plot changes in the log 
employment-to-aggregate population changes. However, conditional on being employed, workers in teleworkable occupation have 
also seen a decline in the average hours worked. 

Fig. 4. Change in unemployment rate and average hours worked during 2007–2009 and 2019–April 2020 by teleworkability.  

Fig. 5. Change in unemployment rate and average hours worked during 2007–2009 and 2019–April 2020 by industry.  

4 This prohibits one from calculating an appropriate sub-population of group that individuals belong to. 
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4.2. Industry 

Fig. 5 plots changes in unemployment rate and the average hours worked during the Global Financial Crisis and the current 
Pandemic recession. Almost all the industries except for agriculture, construction, and financial sectors have seen a sharper rise in the 
unemployment rate during the current recession than the previous recession. In particular, workers in leisure and hospitality have seen 
a sharp increase in the unemployment rate. These workers have also seen a sharp decline in the average hours worked. 

4.2.1. Social industry 
Following Kaplan et al. (2020), we categorize industries into social and non-social (consumption). Industries are considered as 

social if their output requires interpersonal interaction to consume. If you need to work in a factory or a warehouse close to other 
people in order to produce the output, that does not count as social, but if you need to meet someone to consume the output then it 
does. Therefore, manufacturing makes a consumption good whereas restaurants make a social good. Some industries could be harder 
to categorize, for instance, retail and finance. We categorize finance industry as non-social even though you may need to meet with a 
branch manager to open an account, because the majority of financial services are performed without interpersonal interaction. Retail 
is classified as social because you need to go to a store and interact with a clerk to purchase goods. The rise in online retail over the last 
15 years has made that less true today, but we still classify retail industry as social. Even within a broad industry category, some more 
finely defined industries are considered social while others are not. For instance, the financial services that are social are automotive 
rental and leasing, and other consumer goods are rental and leasing. The professional services that are social are vets, security guards, 
and services to buildings and dwellings (except cleaning during construction). The manufacturing sector that is social is retail bakeries. 

Fig. 6 plots changes in unemployment rate and the average hours worked during the Global Financial Crisis and the current 
Pandemic recession by social and consumption (non-social) industries. Between 2007–09, the social industries saw a small increase in 
the unemployment rate. However, during this current Pandemic, the unemployment rate of social jobs has increased sharply, almost 
twice as much as that of non-social jobs. The hours worked of workers in social sectors has also sharply declined. 

4.2.2. Essential industry 
During the current Pandemic crisis, the government has allowed the business operations of essential industries while restricting 

those of non-essential industries (Tomer & Kane, 2020). These include health care facilities, grocery stores, and water utilities. 

Fig. 6. Change in unemployment rate and average hours worked during 2007–2009 and 2019–April 2020 by social and non-social industry.  

Fig. 7. Change in unemployment rate and average hours worked during 2007–2009 and 2019–April 2020 by essential and non-essential industry.  
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Fig. 7 plots changes in the unemployment rate and average hours worked for non-essential and essential industries during the 
Global Financial Crisis and the current Pandemic Crisis. Interestingly, the essential industries have suffered less in terms of unem-
ployment rate during the Global Financial Crisis. However, during the current crisis, the non-essential industries have seen much 
sharper changes in both unemployment rate and average hours worked.5 

4.3. Importance of looking at teleworkable, social, and essential jobs 

The previous subsections showed general patterns of changes in unemployment rates and average hours worked during the two 
recessions. This section emphasizes the importance of looking at both occupation and industry by showing significant heterogeneity 
even within teleworkable occupations. 

Table 1 shows the share of employment in teleworkable, social and essential jobs by broad occupation categories and the share of 
high skilled workers (with bacherlor’s degree or more).6 It shows a significant degree of heterogeneity even at the broad level of 
occupations. For instance, workers in managerial, financial, and professional occupations tend to have a larger share of teleworkable 
employment and have a higher share of workers with bachelor’s degree or above. Nevertheless, professional and related occupations 
are more likely to be social than those in managerial, financial, and professional occupations. Construction and extraction occupations 
and transportation and material moving occupations are both not teleworkable. However, construction and extraction occupations are 
less social and non-essential than transportation and material moving occupations. 

Table 2 shows the share of employment in teleworkable, social, and essential jobs by broad industry categories and the share of high 
skilled workers (with bacherlor’s degree or more). Leisure and hospitality and educational and health services are both social, but only 
educational and health services are essential. Leisure and hospitality is also less likely to be teleworkable than education and health 
services. Moreover, a larger fraction of workers in education and health service industries is with bachelor’s degree than those working 
in leisure and hospitality. While agriculture, forestry, fishing and hunting industries and construction industry are both non-social, but 
the former is considered essential while the latter is not. 

Table 1 
Share Employment in teleworkable, social, and essential jobs by broad occupation classification.   

Share of employment with  

Teleworkable Essential Social High skill  
(1) (2) (3) (4) 

Management, business, and financial occupations 0.83 0.44 0.29 0.60 
Professional and related occupations 0.63 0.43 0.67 0.73 
Service occupations 0.05 0.38 0.89 0.17 
Sales and related occupations 0.21 0.37 0.63 0.34 
Office and administrative support occupations 0.53 0.56 0.47 0.27 
Farming, fishing, and forestry occupations 0.00 0.96 0.03 0.12 
Construction and extraction occupations 0.00 0.09 0.03 0.09 
Installation, maintenance, and repair occupations 0.01 0.54 0.45 0.10 
Production occupations 0.00 0.59 0.14 0.11 
Transportation and material moving occupations 0.00 0.69 0.59 0.12  

Table 2 
Share of employment in teleworkable, social, and essential jobs by broad industry classification.   

Share of employment with  

Teleworkable Essential Social High skill  
(1) (2) (3) (4) 

Agriculture, forestry, fishing, and hunting 0.08 1.00 0.00 0.21 
Mining 0.28 0.84 0.00 0.26 
Construction 0.20 0.00 0.00 0.16 
Manufacturing 0.30 0.64 0.01 0.30 
Wholesale and retail trade 0.20 0.40 0.78 0.26 
Transportation and utilities 0.23 0.82 0.57 0.23 
Information 0.59 0.59 0.00 0.56 
Financial activities 0.70 0.70 0.03 0.54 
Professional and business services 0.65 0.32 0.14 0.56 
Educational and health services 0.51 0.54 1.00 0.56 
Leisure and hospitality 0.14 0.00 1.00 0.24 
Other services 0.31 0.27 0.73 0.29 
Public administration 0.47 . . 0.52  

5 Log employment to aggregate population ratios show similar patterns.  
6 Employment share is calculated based on 2019 data to avoid the potential bias from using the data during the Pandemic recession. 
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Fig. 8 plots the changes in unemployment rates by broad occupation category and broad industry category between the Global 
Financial Crisis and the current recession. The figure is divided into four sections by vertical and horizontal lines marking the average 
change in the unemployment rate in the GFC and the COVID-19 Pandemic Recession, respectively. In North-East section, we see 
occupations and sectors that suffered a larger than average unemployment increase in both recessions. In South-East section, we see 
occupations and sectors that suffered more than average during the GFC but less during the COVID-19 crisis. The South-West section 
shows the occupation and industries that were affected less than average during both recessions. Lastly, the North-West section shows 
occupations and sectors that were affected more during the COVID-19 recession but less during the GFC. Similarly, the fitted line shows 
the average relative relationship between the changes in unemployment rates in respective occupations/sectors between the two 

Fig. 8. Changes in unemployment rate during 2007–2009 and 2019–April 2020 by occupation and industry.  

Table 3 
Share of employment, female and skilled workers in teleworkable, social, and essential jobs.  

Year Share of total employment  

Employment Women High skill  

2007 2019 2007 2019 2007 2019 

Overall average   .476 .480 .333 .400 
Teleworkable .384 .393 .583 .559 .555 .633 
Essential .465 .475 .494 .497 .324 .395 
Social .509 .529 .592 .596 .342 .398  

Fig. 9. Employment share by teleworkable, social, and essential jobs: 2007 vs. 2019.  
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recessions. We see that more teleworkable occupations tend to be less affected during this recession than the previous recession. 
Workers in management and professional occupations have been less affected during the current recession than the previous recession. 
Social and non-essential industries, particularly, jobs in leisure and hospitality, have been much more severely affected than jobs in 
other industries during the current recession than the previous recession. 

Table 3 shows the share of employment in terms of female and skilled workers within each type of jobs. First, we see that there are 
more skilled workers in 2019 (40 percent) than in 2007 (33 percent). Second, the share of aggregate employment in all the three jobs 
have increased between 2007 and 2019. Social jobs have increased by 2 percentage points. Third, we see that teleworkable jobs have a 
higher share of skilled workers, those who have college and more education, (63 percent in 2019) than the average (40 percent in 
2019). However, average educational level of workers in essential and social jobs are very similar to the average. Lastly, teleworkable 
and social jobs have higher share of female workers but, particularly true for social jobs, partially explaining a sharper decline in 
female employment during the current Pandemic recession. 

Lastly, Fig. 9 shows a Venn diagram for the employment share for teleworkable, social, and essential jobs. We see that large 
fractions of jobs overlap across categories. For instance, while social jobs comprise 50.9% (52.9%) of total employment in 2007 (2019), 
68.4 (=34.8%/50.9%) % (69.7%) of them are also categorized as teleworkable and essential jobs in 2007 (2019). A 16.1% (16.0%) of 
total employment is purely social that is neither teleworkable nor essential. Thus, the Venn diagram illustrates a large overlap of 
different types of jobs. 

5. Empirical analysis of labor market outcomes during the pandemic recession vs. the global financial crisis 

Previous sections showed changes in unemployment, and average hours worked across different occupation and industries, with 
special focus on their teleworkability, socialbility, and essentiability. In this section, we formally test if the current recession has seen a 
very different pattern from the previous recession in terms of the decline in employment. Our empirical specification is as follows: 

Δ(Yit − Yt) = αtwOccTW + αsIndS + αeIndE + γXit + Pandemic*(βtwOccTW + βsIndS + βeIndE + ΓpXit) + ϵit (1)  

where (ΔYit − ΔYt) is a change in log employment or unemployment rate at a occupation × industry cell level (ΔYit) after subtracting 
the aggregate change in the variable (ΔYt) for each recession to control for the difference in the size of shocks between the Global 
Financial Crisis and the current Pandemic recession.7 OccTW, IndS and IndE are indicator variables if a occupation × industry cell 
belongs to a teleworkable occupation, a social industry, or an essential industry. Xitincludes demographic characteristics (skill, gender 
(men), age, race (white), and marital status. Pandemicis an indicator variable that is equal to 1 if ΔYit is the change between 2019 and 
April 2020 and zero if it is the change between 2007 and 2009. α’s capture the relative change in log employment or unemployment 
rate for teleworkable, social, and essential jobs during the Global Financial Crisis. β’s are the variables of our interest, which captures 
differential changes in log employment or unemployment rate during the Pandemic recession. The total changes in the left hand side 
variables for the pandemic recession are given by the sum of αk and βk for k ∈ {TW,S,E}. We restrict our occupation × industry pairs to 
the ones with more than 10 observations, leaving us with 700 observations for our regression analysis. 

Higher Non-Response Rate and Misclassifications in 2020 CPS. It is important to note that regression results below and the next 
section should be taken with cautions due to possible biases arising from higher non-response rates and misclassifications in 2020. 
According to Bureau of Labor Statistics (BLS), response rates of the CPS was over 10 percentage points below the average in March after 
the BLS suspended in-person data collection on March 20th, 2020. Non-response rates could be non-random and be highly correlated 
with the types of jobs that workers held.8 However, it is hard to discern the direction of potential biases arising from a higher non- 
response rate in CPS. Moreover, despite its higher non-response rate, the BLS claims that the collected survey and estimates still 
meet accuracy criterion and reliability. 

Nevertheless, the BLS also states that some workers, who were not at work during the entire reference week and thus should be 
classified as temporary layoff, were misclassified as employed but absent from work. This suggests that unemployment numbers could 
be actually higher than reported, and the employment numbers could be lower than reported. If the incidence of misclassifications is 
higher in some sectors, say social jobs due to a higher chance of being actually temporary layoff, then the actual job loss/unem-
ployment in that sector (e.g. the coefficient on social job dummy) could be worse than the regression estimates. Therefore, the results 
below should be taken with caution. 

Potential Impact of the CARE Act. Government policies could also have affected unemployment rates disproportionately for 
workers in some sectors than others, potentially biasing the estimates of pure economic impact of COVID-19 on unemployment rate. 

7 Note that our method of subtracting aggregate change in the variable for each recession implies that we are measuring the impact of recessions 
in terms of percentage points of the variable (e.g. unemployment rate). Consider a simple example. Suppose that change in aggregate unemployment 
rate was 2 percentage points and change in sectoral unemployment rate was 4 percentage points in crisis A, and the aggregate and sectoral un-
employment changes were 3 and 6 percentage points in crisis B, respectively. In this case, our specification would dimply that the impact for the 
sector is 50% higher in crisis B than in crisis A. If we were to take the ratio instead of differences in the sectoral and aggregate unemployment 
change, then the example above would imply the same impact in crisis A and B.  

8 For instance, while both social jobs and essential jobs have high risk of getting infected by COVID-19 due to contact-intensive nature of those 
jobs, jobs in social industries could’ve been more affected than those of essential industries. If two workers in two different industries did not 
respond to survey due to getting infected by COVID-19, this could potentially dampen the estimates of economic impacts on these two types of jobs 
due to sample attrition. 
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For instance, in response to the COVID crisis, the federal government adopted the CARES Act which resulted in many unemployed 
workers receiving benefits that exceeded wages at their previous job. For instance, those employed in social jobs could have been high 
replacement rates workers and thus been more affected by the CARES Act unemployment insurance benefits. These may have 
increased the unemployment rate and increase job separation rate in Section 6 disproportionately for the workers in these sectors. As a 
result, the estimated impact of COVID-19 on the increase in unemployment or job separation rate in our empirical analysis could be 
capturing not only pure economic impact but also the impact of policies. 

Table 4 shows the regression results of Eq. (1). Column (1)–(3) show the regressions with teleworkable occupation dummy, social 
industry dummy, and essential industry dummy and their cross-product with the pandemic dummy without any demographic controls. 
Standard errors shown are all robust standard errors. Column (4) shows the results including all three categories of teleworkable, 
essential and social jobs. We first see that all teleworkable, social and essential jobs were less affected than their counterparts during 
the Global Financial Crisis, which is implied by significant and positive coefficients. During the pandemic, teleworkable and essential 
jobs remained to be less affected than their counterparts. However, social jobs have been affected more severely than their coun-
terparts, and its total impact (sum of coefficients on essential industry and its interaction term with pandemic dummy) is negative. 

There is a tight link between teleworkable jobs and its composition of skilled workers. Although teleworkable jobs have been less 
affected than their counterparts both during the Global Financial Crisis and the current Pandemic without any control variables 
(Table 4: Column (1)–(4)), the impact on teleworkable jobs was similar to their counterparts during the Global Financial Crisis once we 
control for the composition of educated workers (Column (5)). In other words, the sensitivity of teleworkable jobs to negative 
aggregate shocks are in GFC can be attributable to its composition of skilled workers. Nevertheless, during the current Pandemic 
recession, teleworkable jobs, even after accounting for the composition of skilled workers, have been less affected than the coun-
terparts.9 With labor force survey data, however, we cannot discern whether the acyclicality of teleworkable jobs are attributable to 
tasks performed in these jobs that are potentially independent of aggregate productivity or more educated workers in those jobs who 
are simply less likely to become unemployed. 

On the other hand, social jobs are much more severely affected during the Pandemic, and essential jobs are even less affected during 
the current Pandemic than during the Global Financial Crisis. This holds true even after controlling for the demographic compositions 
(Column 6). Moreover, column (6) shows that the difference in job loss between men and women becomes statistically insignificant 
(Men × Pandemic) once we control for the types of jobs (teleworkable occupations, and social and essential industries) and de-

Table 4 
Regression results: change in log employment.   

(1) (2) (3) (4) (5) (6) 

Teleworkable Occ. 0.064**    0.048***  − 0.016  − 0.024   
(0.029)   (0.018) (0.013) (0.016) 

Social Ind.  0.061***   0.119***  0.115***  0.088***    
(0.020)  (0.019) (0.019) (0.016) 

Essential Ind.   0.067*  0.049***  0.052***  0.041**     
(0.035) (0.018) (0.018) (0.016) 

Teleworkable × Pandemic  0.080***    0.133***  0.102***  0.099***   
(0.019)   (0.031) (0.034) (0.036) 

Social × Pandemic   − 0.123**   − 0.218***  − 0.230***  − 0.132***    
(0.060)  (0.064) (0.064) (0.039) 

Essential × Pandemic    0.041*  0.107***  0.093***  0.123***     
(0.024) (0.038) (0.034) (0.041) 

Skill     0.185***  0.184***       
(0.037) (0.035) 

Skill × Pandemic      0.035 − 0.013       
(0.051) (0.065) 

Men      − 0.005        
(0.031) 

Men × Pandemic       0.113       
(0.086)  

Education Control N N N N Y Y 
Demographic Controls N N N N N Y 
Observations 700 700 700 700 700 700 
R-squared 0.085 0.055 0.058 0.272 0.319 0.379 

Note: Regression results are of Eq. (1). Robust standard errors are in parentheses. *, **, *** indicate the significance levels at 10%, 5%, and 1%, 
repsectively. Demographic controls include age, race (white), and marital status in addition to skill and gender (men). 

9 However, the relative change in unemployment rate is similar between teleworkable and non-teleworkable jobs during the Pandemic (Table 7 
Column (6) in Appendix). This difference in results based on log employment-to-population ratio and the unemployment rate can be attributable to 
the movement into out of labor force. 
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mographic characteristics (age, race, and education) at occupation × industry level. This is different from the naive comparison of 
total employment decline from Fig. 10, which suggests that women have been affected more during the Pandemic than men.10 

6. Distributional impact at individual level: the pandemic recession vs. the global financial crisis 

Many researchers have shown that this Pandemic recession is impacting the most vulnerable and low income group more severely 
than their less vulnerable and richer counterparts in terms of health and income (Cajner et al. (2020) and Schmitt-Grohé, Teoh, and 
Martín (2020)). In this section, we study the distributional effects in terms of employment outcome between the Pandemic Recession 
and the Global Financial Crisis. Specifically, we investigate how much of the higher job separation probabilities for the lowest quantile 
in wage distribution can be explained by workers’ demographic characteristics, occupations (e.g. teleworkability), and industries 
(social and essential). 

We exploit the panel dimension of the Current Population Survey for this section. We focus our analysis on the month-to-month job 
separation probability between February and April 2020 compared to the Global Financial Crisis period of 2008 to 2009. Using the 
wage information for the outgoing rotation groups, we can observe wage information between 9 and 11 months prior to the obser-
vation month and group the individuals into four wage quantiles.11 We then follow the month-to-month transition rates during the 
Global Financial Crisis (2008 and 2009) and the Pandemic recession (February-April 2020). We define job separation as movement 
from being employed in month t-1 to either being unemployed or out of labor force in month t. We do so to take into account the results 
of Coibion et al. (2020), which claim that many of those who lost jobs are not actively looking for a job and thus may be classified as out 
of the labor force. However, the results are generally robust when we restrict our sample to March-April 2020 transition only and to 
movement from employment to unemployment (and excluding out of labor force) (See Table 8 in Appendix for robustness check). 

Following Cajner et al. (2020), our empirical specification is a linear probability model with OLS with standard errors clustered at 
broad occupation × industry categories: 

JSRit =
∑Q

q=1
I{i

′

squantileisq} × (αq + βqPandemic) + ΓXit + ΦXit × Pandemic +
∑T

t=1
θtIMt + ϵit (2)  

where JSRit is a dummy variable which is equal to 1 if a worker has separated from a job between t − 1 and t and 0 otherwise. In our 
baseline specification, we define job separation as a movement from employment to either unemployment or out of the labor force. As 
a robustness check, we alternatively define job separation as the movement from employment to unemployment. αq measures the job 
separation probabilities during the pre-Pandemic period for a worker belonging to quantile q relative to the top-wage earner, and βq 

measures the job separation probabilities relative to the top-wage earners during the Pandemic for a worker who belonged to wage 
quantile q prior to the recession. Xit includes demographic characteristics of workers, and θt IMt are the time fixed effects for each 
month. 

Our specification differs in several dimensions from Cajner et al. (2020). While Cajner et al. (2020) split the sample into five 
different wage quanties, we separate into four different quantiles (i.e. 0–25th percentile, 25th–50th percentile, 50th–75th percentile, 
and 75th–100th percentile) to allow more observations within the cell. Unlike Cajner et al. (2020), we control for educational 
attainment level of workers but do not control for business size. Moreover, we use wage information from a year ago while they use 
early March wage data to categorize the sample into different wage quantiles. 

Table 5 shows the regression results of Eq. (2). Column (1) shows the baseline results with no control. We see that the workers at the 

Fig. 10. Extensive/intensive margin during 2007–2009 and 2019–April 2020 by sex.  

10 Using individual level regression, Montenovo et al. (2020) show that women still suffered more during this recession than men. However, the 
degree of gender explaining the increase in temporary layoff declines by two-thirds once occupations and industries are controlled for.  
11 To increase the sample size, we treat both February-March and March-April 2020 as the Pandemic period. 
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bottom wage quantiles have a much higher chance of separating from a job than workers in the top wage quantile during the Global 
Financial Crisis and the current Pandemic recession. Column (2) shows the results controlling for non-education demographic in-
formation (i.e. gender, race, and age). The demographic information explains about 20 percent of job separation rate for the workers at 
the bottom wage quantile (0.013–0.017)/(0.017) ≈ 0.23) during the Global Financial Crisis. Column (3) further controls for the 
educational attainment, which explains additional 11 percent of job separation probabilities of workers in the bottom quantile or total 
of 40 percent combining demographic and educational information during the Global Financial Crisis. During the Pandemic, the 
workers in the bottom three quantiles suffered from a higher chance of losing job than those in the top quantile. 

Column (4) controls for broad occupation × industry and state fixed effects. Even after controlling for broad occupation × in-
dustry and state fixed effects, workers in the bottom wage quantile got more severely affected during the current Pandemic than the 
Global Financial Crisis, suggesting a severe distributional impact of the current Pandemic. Results are robust to alternatively defining 
job separation probability as those moving from employment to unemployment but excluding movement to out of the labor force (see 
Table 8 in Appendix). In sum, during both recessions, workers at the bottom wage quantile had suffered more than those in the top 
wage quantile. However, the current recession had shown a even stronger distributional impact than the previous recession in terms of 
job prospects for the workers at the bottom wage quantile. 

7. Permanent and short-term job losses? 

One angle that we have been silent so far is the degree of permanent vs. temporary job loss from the employment. Kurmann et al. 
(2020) find that temporarily closed business have rehired a large share of previously furloughed workers. This suggests that most job 
separations during the COVID crisis are likely short-lived, and they may have avoided human capital losses. To investigate this in the U. 
S CPS, we look at questions on the reasons of unemployment, particularly between permanent job losers vs. temporary layoff persons. 
We then calculate the contributions of different reasons of unemployment to the total increase in the unemployment rate in 2007–2009 

Table 5 
Regression results: monthly job separation for wage quantiles.   

(1) (2) (3) (4) 

Wage Quantile: 1 0.017***  0.013***  0.011***  0.010***   
(0.001) (0.002) (0.002) (0.002) 

Wage Quantile: 2 0.007***  0.005***  0.003**  0.002  
(0.001) (0.001) (0.001) (0.001) 

Wage Quantile: 3 0.003**  0.002*  0.000 0.000  
(0.001) (0.001) (0.001) (0.001) 

Pandemic × Wage Quantile: 1  0.078***  0.076***  0.058***  0.038***   
(0.012) (0.011) (0.008) (0.007) 

Pandemic × Wage Quantile: 2  0.049***  0.047***  0.033***  0.025***   
(0.011) (0.010) (0.008) (0.006) 

Pandemic × Wage Quantile: 3  0.020***  0.019***  0.011***  0.009**   
(0.005) (0.005) (0.004) (0.004)  

Demographic Controls N Y Y Y 
Education Control N N Y Y 
Occ × Ind Fixed Effects:  N N N Y 
State Fixed Effects: N N N Y 
Observations 245,149 245,149 245,149 245,149 
R-squared 0.023 0.025 0.027 0.041 

Note: Table shows regression results of Eq. (2). “Wage Quantile: q” and “Wage Quantile: q” × Pandemic show the coefficients α′

qs and β′

qs from the 
regression. The coefficient shows the differential job separation rate for workers in quantile q relative to the top (4th) quantile. Standard Errors are 
clustered at occupation × industry Level. *, **, *** indicate the significance levels at 10%, 5%, and 1%, repsectively. 

Table 6 
Contributions by reasons for unemployment to unemployment rate change.   

2007–2009 2019–April 2020  

(1) (2) (3) (4)  
Contr (ppts) (percent) Contr (ppts) (percent) 

Temporary Layoff 0.26 4.8 5.45 49.4 
Permanent Job Losers 2.1 39 0.19 1.72 
Temporary Job Ended 2.35 43.7 5.64 51.1 
Job Leaver 0.04 0.7 − 0.08  − 0.7  
New Entrant 0.17 3.2 − 0.06  − 0.5  
Re-entrant 0.46 8.6 − 0.1  − 0.9  
Total Unemployment Rate Increase 5.38  11.03   
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and 2019–2020 (Table 6). Columns (1) an (3) in Table 6 show the contributions (in percentage points) of different reasons of un-
employment to the total increase in the unemployment rate, and columns (2) and (4) show corresponding percent of the contributions. 
During the GFC, permanent job losers comprised a large share, close to 40 percent, of the increase in the unemployment pool (Column 
(2)), and less than 5 percent of the total increase in unemployment consisted of temporary layoff. On the other hand, during the 
COVID-19 Pandemic Recession, the permanent job losers comprised merely less than 2 percent of the total change in unemployment 
while temporary layoff workers comprised close to 50 percent of the total change in unemployment (Column 4). This corroborates the 
findings by Kurmann et al. (2020) from the worker side that most job loss during the COVID-19 were temporary. 

Fig. 11. Extensive/intensive margin during 2007–2009 and 2019–April 2020 by age group.  

Fig. 12. Extensive/intensive margin during 2007–2009 and 2019–April 2020 by race.  

Fig. 13. Extensive/intensive margin during 2007–2009 and 2019–April 2020 by education.  
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Table 7 
Regression results: change in unemployment rate.   

(1) (2) (3) (4) (5) (6) 

Teleworkable Occ. − 0.035***    − 0.029***  − 0.008*  0.001  
(0.012)   (0.006) (0.005) (0.004) 

Social Ind.  − 0.008   − 0.035***  − 0.036***  − 0.025***    
(0.008)  (0.007) (0.006) (0.004) 

Essential Ind.   − 0.033**  − 0.022***  − 0.025***  − 0.016***     
(0.014) (0.006) (0.006) (0.004) 

Teleworkable × Pandemic  − 0.027***    − 0.044***  − 0.014  − 0.013   
(0.008)   (0.013) (0.012) (0.011) 

Social × Pandemic   0.052*   0.097***  0.108***  0.077***    
(0.029)  (0.029) (0.028) (0.016) 

Essential × Pandemic    − 0.028***  − 0.064***  − 0.054***  − 0.067***     
(0.009) (0.018) (0.016) (0.018) 

Skill     − 0.068***  − 0.048***       
(0.013) (0.009) 

Skill × Pandemic      − 0.049***  − 0.044*       
(0.017) (0.023) 

Men      0.017*        
(0.009) 

Men × Pandemic       − 0.017        
(0.037)  

Education Control N N N N Y Y 
Demographic Controls N N N N N Y 
Observations 682 682 682 682 682 682 
R-squared 0.118 0.082 0.123 0.426 0.500 0.566 

Note: Table shows regression results of Eq. (1). Robust standard errors are in parentheses. *, **, *** indicate the significance levels at 10%, 5%, and 
1%, repsectively. Demographic controls include age, race (white), and marital status in addition to skill and gender (men). 

Table 8 
Regression results: monthly job separation for wage quantiles (only employment to unemployment).   

(1) (2) (3) (4) 

Wage Quantile: 1 0.007***  0.006***  0.004***  0.003***   
(0.001) (0.001) (0.001) (0.001) 

Wage Quantile: 2 0.003***  0.003***  0.001 0.000  
(0.001) (0.001) (0.001) (0.001) 

Wage Quantile: 3 0.002***  0.002***  0.001 0.000  
(0.001) (0.001) (0.001) (0.001) 

Pandemic × Wage Quantile: 1  0.054***  0.052***  0.039***  0.024***   
(0.009) (0.009) (0.007) (0.005) 

Pandemic × Wage Quantile: 2  0.036***  0.035***  0.025***  0.019***   
(0.006) (0.006) (0.005) (0.005) 

Pandemic × Wage Quantile: 3  0.018***  0.017***  0.011***  0.010***   
(0.005) (0.004) (0.004) (0.004)  

Demographic Controls N Y Y Y 
Education Control N N Y Y 
Occ × Ind Fixed Effects:  N N N Y 
State Fixed Effects: N N N Y 
Observations 245,149 245,149 245,149 245,149 
R-squared 0.022 0.023 0.024 0.040 

Note: Table shows regression results of Eq. (2). *, **, *** indicate the significance levels at 10%, 5%, and 1%, repsectively. “Wage Quantile: q” and 
“Wage Quantile: q” × Pandemic show the coefficients α′

qs and β′

qs from the regression. The coefficient shows the differential job separation rate for 
workers in quantile q relative to the top (4th) quantile. Standard Errors are clustered at occupation × industry Level. 
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8. Conclusion 

This paper studies the differential impacts of recessions on employment, unemployment rate, and hours worked across different 
segments of the economy during the current Pandemic Recession and the Global Financial Crisis. In particular, we focus on (i) de-
mographic characteristics of workers–age, gender, race, and education, (ii) three types of job characteristics – “essential” (which were 
not subject to government mandated shutdowns during the current Pandemic recession), “social” (where consumption of goods require 
human interactions) and “teleworkable” (where individuals have the option of working at home) –, and (iii) wage distributions of 
workers. 

We document that teleworkable and essential jobs are less affected during the current Pandemic Recession while social jobs have 
been affected severely. Surprisingly, however, we show that all three types of jobs have been less affected (or less cyclical) during the 
2008 Global Financial Crisis. Furthermore, the resilience (acyclicality) of teleworkable jobs to the negative aggregate shocks during the 
Global Financial Crisis can be attributable to the fact that a large share of workers in teleowrkable jobs consists of skilled or highly- 
educated workers – who have been historically less affected in any recession. 

With regards to workers’ demographic characteristics, this paper corroborates the findings of other research in that Hispanic and 
female workers have been more severely affected than their counterparts during the current Pandemic Recession. Less educated and 
young workers have always been affected more severely than their more educated and older counterparts in both recessions (the 
Global Financial Crisis and the current Pandemic recession). 

The Global Financial Crisis and the current Pandemic recession both had a significant negative distributional impact in terms of job 
prospects. Low-income earners had suffered more from job loss than top-income earners. This differential impact of the job separation 
rates was much more stark during the current Pandemic recession. 

Lastly, we also showed that, unlike the Global Financial Crisis, most of workers who became unemployed were classified as 
temporary layoff during the COVID-19 Pandemic recession, suggesting short-lived nature of job losses during the COVID-19 Pandemic 
recession. 

Appendix A. The distributional effects of the pandemic recession vs. the global financial crisis by demographic groups 

In this section, we investigate whether the group of workers who have been more severely affected during the current Pandemic 
recession had also been severely affected during the 2008 Global Financial Crisis. Specifically, we study changes in both the extensive 
(employment rate) and intensive (average hours worked) margin of employment between 2007 and 2009 against those between 2019 
and April 2020 across (i) gender, (ii) race, (iii) age group, and (iv) educational attainment. We show that while the magnitude of 
decline in employment and hours worked is much severe during this current recession than during the Global Financial Crisis, the 
groups of workers suffered relatively more (younger, less educated and non-whites workers) were similar between the two recessions. 
One key difference between the two recessions is that women saw a sharper decline in employment during the current recession than 
during the Global Financial Crisis. 

A.1 Gender 

Fig. 10 plots the changes in log employment to population ratio and the log average hours worked by gender between 2007–2009 
and 2019–April 2020. Whereas men suffered more in terms of employment (extensive margin) in 2007–2009, women got more heavily 
affected during the current Pandemic recession. However, conditional on being employed, the average hours worked declined less for 
women during both during the Global Financial Crisis and the current Pandemic recession. However, as we show in Section 5, a major 
part of the decline in employment rate for women during this recession is attributable to the fact that women are more likely to work in 
the industries and occupations that were affected more severely during the current Pandemic recession. 

A.2 Age group 

Fig. 11 plots the changes in extensive and intensive margin of employment for 2007–2009 and 2019–April 2020 for age groups by 
every 10 years. Compared to the GFC, younger workers, particularly the workers between 21–30 years old, saw a sharper decline in 
employment during the current Pandemic recession than the other age groups. The magnitude of decline in log average hours worked 
(intensive margin) was similar across different age group, with the exception of the older workers between 61–70 years old. 

A.3 Race 

Fig. 12 plots the changes in extensive and intensive margin of employment for 2007–2009 and 2019–April 2020 by race. Compared 
to the Global Financial Crisis, employment rates for black and Hispanic workers declined more severely than other racial groups, 
particularly during the current recession. The hours worked declined least for Asian workers. 

A.4 Education 

Fig. 13 plots the changes in extensive and intensive margin of employment for 2007–2009 and 2019–April 2020 by educational 
attainment level. While the magnitudes of decline in both employment rate and average hours worked are more severe during the 
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current recession, the pattern of relative decline is very similar across educational groups between the two recessions. Less educated 
workers have seen a much sharper decline in both the employment rate and the average hours worked than more educated workers. 

Appendix B. Robustness check: empirical results 

Table 7 shows the regression results from Section 5 (Table 4) for change in unemployment rate. Table 8 shows the regression results 
from Section 6 (Table 5) when monthly job separation was defined for movement from employment to unemployment only.  
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